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Table of RBFs

3

𝜙 𝒙 , 𝒙 ∈ ℝ𝑑 , 𝜀 ∈ ℝ Name (acronym)

1 + 𝜀 𝒙 2 Multiquadric (MQ)

1

1 + 𝜀 𝒙 2

Inverse Quadratic (IQ)

1

1 + 𝜀 𝒙 2

Inverse Multiquadric (IMQ)

𝑒− 𝜀 𝒙 2
Gaussian (GA)

𝒙 2𝑘+1

𝒙 2𝑘 log 𝒙 , 𝑘 ∈ ℕ
Polyharmonic Spline (PHS)

⋅ = ⋅ 2



Some RBFs in 1D

Polyharmonic Spline RBFs Infinitely Differentiable RBFs
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Example: Equi-spaced Interpolation in 1D

PHS Basis Functions Approximation
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Structure of the Linear System
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1 𝑥1 𝑥1
2

1 𝑥2 𝑥2
2

1 𝑥3 𝑥3
2

1 𝑥4 𝑥4
2

1 𝑥5 𝑥5
2

𝜇1
𝜇2
𝜇3

=

𝑓1
𝑓2
𝑓3
𝑓4
𝑓5

1 𝑥1 𝑥1
2 𝑥1

3 𝑥1
4

1 𝑥2 𝑥2
2 𝑥2

3 𝑥2
4

1 𝑥3 𝑥3
2 𝑥3

3 𝑥3
4

1 𝑥4 𝑥4
2 𝑥4

3 𝑥4
4

1 𝑥5 𝑥5
2 𝑥5

3 𝑥5
4

𝜇1
𝜇2
𝜇3
𝜇4
𝜇5

=

𝑓1
𝑓2
𝑓3
𝑓4
𝑓5

0 𝑥1 − 𝑥2
3 𝑥1 − 𝑥3

3 𝑥1 − 𝑥4
3 𝑥1 − 𝑥5

3 1 𝑥1 𝑥1
2

𝑥2 − 𝑥1
3 0 𝑥2 − 𝑥3

3 𝑥2 − 𝑥4
3 𝑥2 − 𝑥5

3 1 𝑥2 𝑥2
2

𝑥3 − 𝑥1
3 𝑥3 − 𝑥2

3 0 𝑥3 − 𝑥4
3 𝑥3 − 𝑥5

3 1 𝑥3 𝑥3
2

𝑥4 − 𝑥1
3 𝑥4 − 𝑥2

3 𝑥4 − 𝑥3
3 0 𝑥4 − 𝑥5

3 1 𝑥4 𝑥4
2

𝑥5 − 𝑥1
3 𝑥5 − 𝑥2

3 𝑥5 − 𝑥3
3 𝑥5 − 𝑥4

3 0 1 𝑥5 𝑥5
2

1 1 1 1 1 0 0 0
𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 0 0 0

𝑥1
2 𝑥2

2 𝑥3
2 𝑥4

2 𝑥5
2 0 0 0

𝜆1
𝜆2
𝜆3
𝜆4
𝜆5

𝜇1
𝜇2
𝜇3

=

𝑓1
𝑓2
𝑓3
𝑓4
𝑓5

0
0
0

Least Squares Parabola:
𝜇1 + 𝜇2𝑥 + 𝜇3𝑥

2

Polynomial Interpolant:
𝜇1 + 𝜇2𝑥 + 𝜇3𝑥

2 + 𝜇4𝑥
3 + 𝜇5𝑥

4

PHS Interpolant:

෍

𝑗=1

5

𝜆𝑗 𝑥 − 𝑥𝑗
3
+ 𝜇1 + 𝜇2𝑥 + 𝜇3𝑥
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Properties of Polyharmonic Splines

▪ PHS basis includes both RBFs and polynomials

▪ RBFs improve performance and allow the use of irregular nodes

▪ polynomials give convergence to smooth solutions (no saturation error)

▪ The interpolation problem is guaranteed to have a unique solution 
provided that polynomials are included up to the required degree, and the 
nodes are unisolvent.  For 𝑘 = 1,2,3, …
▪ 𝜙 𝒙 = 𝒙 2𝑘 log 𝒙

▪ Polynomials up to degree 𝑘 or higher

▪ 𝜙 𝒙 = 𝒙 2𝑘+1

▪ Polynomials up to degree 𝑘 or higher

▪ Rule of thumb for modest polynomial degrees:  Twice as many RBFs as polynomials

▪ Condition number of PHS 𝐴-matrix is invariant under rotation, translation, 
and uniform scaling

▪ No need to search for optimal shape parameter
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Interpolation in 2D 𝒙 = 𝑥, 𝑦

Given nodes 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑛 and corresponding function values 𝑓𝑖 𝑖=1

𝑛 , find a linear combination of RBF and 
polynomial basis functions that matches the data exactly.

1.  Assume the appropriate form of the underlying approximation:

Φ 𝑥, 𝑦 =෍

𝑗=1

𝑛

𝜆𝑗𝜙𝑗 𝑥, 𝑦 +෍

𝑘=1

𝑚

𝜇𝑘𝑝𝑘 𝑥, 𝑦 ,

where 𝜙𝑗 𝑥, 𝑦 = 𝜙 𝑥 − 𝑥𝑗 , 𝑦 − 𝑦𝑗 .

2.  Require Φ to match the data at each node:

Φ 𝑥𝑖 , 𝑦𝑖 =෍

𝑗=1

𝑛

𝜆𝑗𝜙𝑗 𝑥𝑖 , 𝑦𝑖 +෍

𝑘=1

𝑚

𝜇𝑘𝑝𝑘 𝑥𝑖 , 𝑦𝑖 = 𝑓𝑖 , 𝑖 = 1,2,3, … , 𝑛.

3.  Enforce regularity conditions on the coefficients 𝜆𝑗 :

෍

𝑗=1

𝑛

𝜆𝑗𝑝𝑘 𝑥𝑗, 𝑦𝑗 = 0, 𝑘 = 1,2,3,… ,𝑚.

4.  Solve the symmetric linear system for 𝜆𝑗 and 𝜇𝑘 .
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Differentiation Weights in 2D

Interpolation Problem:
𝐀 𝐏
𝐏𝑇 𝐎

𝝀
𝝁

=
𝒇
𝑶

,

𝑎𝑖𝑗 = 𝜙𝑗 𝑥𝑖 , 𝑦𝑖 = 𝜙 𝑥𝑖 − 𝑥𝑗 , 𝑦𝑖 − 𝑦𝑗 , 𝑖, 𝑗 = 1,2,3, … , 𝑛,

𝑝𝑖𝑘 = 𝑝𝑘 𝑥𝑖 , 𝑦𝑖 , 𝑖 = 1,2,3, … , 𝑛, 𝑘 = 1,2,3, … ,𝑚.

Use 𝐿Φ ෤𝑥, ෤𝑦 to approximate 𝐿𝑓 ෤𝑥, ෤𝑦 :

𝐿Φ ෤𝑥, ෤𝑦 =෍

𝑗=1

𝑛

𝜆𝑗 𝐿𝜙𝑗 ෤𝑥, ෤𝑦 +෍

𝑘=1

𝑚

𝜇𝑘 𝐿𝑝𝑘 ෤𝑥, ෤𝑦

= 𝒃 𝒄
𝝀
𝝁

= 𝒃 𝒄
𝐀 𝐏
𝐏𝑇 𝐎

−1

weights

𝒇
𝑶

,

𝑏𝑗 = 𝐿𝜙𝑗 ෤𝑥, ෤𝑦 , 𝑗 = 1,2,3, … , 𝑛,

𝑐𝑘 = 𝐿𝑝𝑘 ෤𝑥, ෤𝑦 , 𝑘 = 1,2,3, … ,𝑚.
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Derivative Approximation on the Sphere

▪ Given: nodes 𝒙, 𝒚, 𝒛 on the sphere and function values 𝒇

▪ Find: differentiation matrices (DMs) 𝐖𝑥, 𝐖𝑦, 𝐖𝑧 to approximate 
𝜕

𝜕𝑥
, 
𝜕

𝜕𝑦
, 
𝜕

𝜕𝑧

▪ Method: Use the fact that 𝛻𝑓 ෤𝑥, ෤𝑦, ǁ𝑧 is tangent to the sphere at ෤𝑥, ෤𝑦, ǁ𝑧

▪ For each node, get orthogonal unit vectors 𝒆 ො𝑥 and 𝒆 ො𝑦 tangent to the sphere

▪ Use 2D method to get matrices 𝐖ො𝑥 and 𝐖ො𝑦 that approximate 
𝜕

𝜕 ො𝑥
and 

𝜕

𝜕 ො𝑦

▪ 𝛻𝑓 = 𝒆 ො𝑥
𝜕𝑓

𝜕 ො𝑥
+ 𝒆 ො𝑦

𝜕𝑓

𝜕 ො𝑦

▪
𝜕𝑓

𝜕𝑥
= 𝛻𝑓 1 = 𝒆 ො𝑥 1

𝜕𝑓

𝜕 ො𝑥
+ 𝒆 ො𝑦 1

𝜕𝑓

𝜕 ො𝑦
= 𝒆 ො𝑥 1

𝜕

𝜕 ො𝑥
+ 𝒆 ො𝑦 1

𝜕

𝜕 ො𝑦
𝑓

▪ 𝐖𝑥 = diag 𝒆 ො𝑥 1 𝐖ො𝑥 + diag 𝒆 ො𝑦 1
𝐖ො𝑦

▪ 𝐖𝑦 = diag 𝒆 ො𝑥 2 𝐖ො𝑥 + diag 𝒆 ො𝑦 2
𝐖ො𝑦

▪ 𝐖𝑧 = diag 𝒆 ො𝑥 3 𝐖ො𝑥 + diag 𝒆 ො𝑦 3
𝐖ො𝑦
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Semi-Lagrangian Transport

▪ Governing Equations (velocity 𝒖 is a known function)

▪
𝜕𝜌

𝜕𝑡
= −𝒖 ⋅ 𝛻𝜌 − 𝜌𝛻 ⋅ 𝒖, (Eulerian, short time-steps)

▪
𝐷𝑞

𝐷𝑡
=

𝜕

𝜕𝑡
+ 𝒖 ⋅ 𝛻 𝑞 = 0. (Semi-Lagrangian, long time-steps)

▪ Quasi-Monotone Limiter for 𝑞 (const. along flow trajectories)

▪ 𝑚𝑘 = min
ℓ

𝑞𝑘ℓ
(𝑛)

and 𝑀𝑘 = max
ℓ

𝑞𝑘ℓ
(𝑛)

▪ Set 𝑞𝑘
(𝑛+1)

= min 𝑞𝑘
(𝑛+1)

, 𝑀𝑘

▪ Set 𝑞𝑘
(𝑛+1)

= max 𝑞𝑘
(𝑛+1)

, 𝑚𝑘

▪ Mass Fixer tracerMass ≡ σ𝑘=1
𝑁 𝜌𝑘𝑞𝑘𝑉𝑘

▪ If tracerMass < initialMass, add mass in cells with 𝑞𝑘 < 𝑀𝑘

▪ If tracerMass > initialMass, subtract mass from cells with 𝑞𝑘 > 𝑚𝑘

11



Semi-Lagrangian Transport
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Pre-Processing

▪ Get DMs 𝐖𝑥, 𝐖𝑦, and 𝐖𝑧 for the continuity equation

▪ Find index of the 𝑛 nearest neighbors to each node

▪ For each node 𝒙𝑘 = 𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘 , write its 𝑛 neighbors in 

terms of two orthogonal unit vectors 𝒆 ො𝑥, 𝒆 ො𝑦 tangent to the 

sphere at 𝒙𝑘, and one unit vector 𝒆 Ƹ𝑧 normal to the sphere at 
𝒙𝑘, so that

𝒙𝑘ℓ = ො𝑥𝑘ℓ𝒆 ො𝑥 + ො𝑦𝑘ℓ𝒆 ො𝑦 + Ƹ𝑧𝑘ℓ𝒆 Ƹ𝑧, ℓ = 1,2,3,… , 𝑛.

▪ Set 𝐂𝑘 =
𝐀𝑘 𝐏𝑘
𝐏𝑘
𝑇 𝐎6×6

−1
𝐈𝑛

𝐎6×𝑛
, where

𝐀𝑘 𝑖𝑗 = 𝜙 ො𝑥𝑘𝑖 − ො𝑥𝑘𝑗 , ො𝑦𝑘𝑖 − ො𝑦𝑘𝑗 , 𝑖, 𝑗 = 1,2,3,… , 𝑛,

𝐏𝑘 = 𝟏, ෝ𝒙𝑘 , ෝ𝒚𝑘 , ෝ𝒙𝑘
2 , ෝ𝒙𝑘ෝ𝒚𝑘 , ෝ𝒚𝑘

2 .
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Time Stepping

1. Step 
𝜕𝜌

𝜕𝑡
= −𝒖 ⋅ 𝛻𝜌 − 𝜌𝛻 ⋅ 𝒖 from 𝑡𝑛 to 𝑡𝑛+1 using several 

explicit Eulerian time steps (RK3)

2. Step 𝒙′ = −𝒖 from 𝑡𝑛+1 to 𝑡𝑛 to get departure points (RK4)

3. Find the nearest fixed neighbor to each departure point

4. Use the corresponding pre-calculated cardinal coefficients 
𝐂𝑘 and the newly formed row-vectors 𝒃𝑘 to get rows of 

the interpolation matrix 𝐖 𝐖𝑘⋅ = 𝒃𝑘𝐂𝑘
5. Update 𝑞 on fixed nodes using weights 𝐖

6. Cycle quasi-monotone limiter and mass-fixer until the tracer 
mass is nearly equal to the initial tracer mass (diff<1e-13)

7. Repeat
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Hyperviscosity

▪ Add a small dissipative term to the continuity equation

▪
𝜕𝜌

𝜕𝑡
= −𝒖 ⋅ 𝛻𝜌 − 𝜌𝛻 ⋅ 𝒖 + 𝛾max 𝒖 Δ𝑥 2𝐾−1Δ𝐾𝜌

▪ Reduce high-frequency noise while keeping order of 
convergence intact

▪ Achieve stability in time using explicit time-stepping

▪ PHS are ideal for hyperviscosity, because applying the Laplace 
operator to a PHS returns another PHS

▪ 𝜙 𝑥, 𝑦 = 𝑥2 + 𝑦2 𝑚/2

▪ Δ𝜙 𝑥, 𝑦 =
𝜕2𝜙

𝜕𝑥2
+

𝜕2𝜙

𝜕𝑦2
= 𝑚2 𝑥2 + 𝑦2 (𝑚−2)/2

▪ Parameter 𝛾 ∈ ℝ is determined experimentally at low 
resolution, and remains unchanged as resolution increases
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Transport Test Cases on the Sphere

▪ Initial Condition 𝑞0 (𝜌0 = 1 in all cases)

▪ Taken from Nair and Lauritzen, 2010 (NL2010)

▪ Gaussian Hills (infinitely differentiable)

▪ Cosine Bells (once continuously differentiable)

▪ Slotted Cylinders (not continuous)

▪ Velocity Field (NL2010)

▪ Case 1:  Translating, vorticity-dominated flow CFLmax =
max 𝒖 Δ𝑡

Δ𝑥
≈ 8

▪ Case 2:  Translating, divergence-dominated flow CFLmax ≈ 5

▪ Spatial Approximations (Minimum Energy (ME) Nodes)

▪ Number of nodes 𝑁 = 242(576), 482(2304), 962 9216 , 1922 36864

▪ Interpolation (semi-Lagrangian tracer transport)

▪ 𝒙 3 + 𝑝1 + 𝑛19

▪ Derivative Approximation (Eulerian continuity equation)

▪ 𝒙 2 log 𝒙 + 𝑝5 + 𝑛42

▪ Time-stepping from 𝑡 = 0 to 𝑡 = 5 (one revolution)
16



Nodes and Initial Conditions for 𝑞
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Gaussian Hills

(GH)

Cosine Bells

(CB)

Slotted Cylinders

(SC)

𝑁 = 242 = 576
ME nodes
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Time Snapshots, Velocity Case 1
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Time Snapshots, Velocity Case 2
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GH, Velocity Case 1, Unlimited
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CB, Velocity Case 1, Unlimited
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SC, Velocity Case 1, Unlimited
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GH, Velocity Case 1
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CB, Velocity Case 1
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SC, Velocity Case 1
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GH, Velocity Case 2
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CB, Velocity Case 2
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SC, Velocity Case 2
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Advantages of Semi-Lagrangian Transport

▪ Large Time steps 
max 𝒖 Δ𝑡

Δ𝑥
≫ 1

▪ Simple governing equation and solution algorithm

▪
𝐷𝑞

𝐷𝑡
= 0

𝐷

𝐷𝑡
=

𝜕

𝜕𝑡
+ 𝒖 ⋅ 𝛻

▪ 𝑞 is constant along flow trajectories

▪ No spatial derivatives

▪ (1) time-step for departure points, (2) interpolate for new values of 𝑞

▪ No need for hyperviscosity
▪ High frequencies automatically damped by repeated interpolation

▪ Numerical solutions remain bounded even if the node set is poorly 
distributed

▪ Simple limiter to reduce oscillations and preserve bounds
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Shallow Water Model

Governing Equations:

𝜕𝒖

𝜕𝑡
= −𝒖 ⋅ 𝛻𝒖 − 𝑓 ෡𝒌 × 𝒖 − 𝑔𝛻ℎ,

𝜕ℎ∗

𝜕𝑡
= −𝒖 ⋅ 𝛻ℎ∗ − ℎ∗ 𝛻 ⋅ 𝒖 .

▪ 𝑓 = 2Ω sin 𝜃, where Ω = angular velocity of Earth, 𝜃 = latitude

▪ ෡𝒌 is the unit normal to the sphere

▪ 𝑔 is gravitational acceleration

▪ ℎ = ℎ𝑠 𝑥, 𝑦, 𝑧 + ℎ∗ 𝑥, 𝑦, 𝑧, 𝑡 is the depth of the fluid

Note: The velocity 𝒖 is adjusted after every Runge-Kutta stage to remain 

tangent to the sphere 𝒖 ← 𝒖 − 𝒖 ⋅ ෡𝒌 ෡𝒌
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Nodes

Maximum Determinant (MD) Hammersley
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Shallow Water Test Cases

▪ Taken from Williamson et al, JCP 1992

▪ Steady-state smooth flow
▪ ℎ𝑠 = 0

▪ Exact solution known

▪ Flow over an isolated mountain

▪ ℎ𝑠 is a cone-shaped mountain centered at 𝜆, 𝜃 = −
𝜋

2
,
𝜋

6

▪ Exact solution unavailable

▪ Rossby-Haurwitz Wave

▪ 𝒖0 and ℎ0 satisfy the barotropic vorticity equations

▪ ℎ𝑠 = 0

▪ Exact solution unavailable
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Parameters for Shallow Water Tests

▪ Derivative approximations 
𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
,
𝜕

𝜕𝑧

▪ 𝜙 𝑥 = 𝑥
2
log 𝑥

▪ Polynomials up to degree 5

▪ Stencil size 42 (twice as many RBFs as polynomials)

▪ Hyperviscosity Δ3

▪ 𝜙 𝑥 = 𝑥
7

▪ Polynomials up to degree 5

▪ Stencil size 42

▪ Parameter 𝛾 = 2−12 ≈ 2.4 × 10−4

▪ Time Stepping (3 stage, 3rd order Runge-Kutta)
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𝑵 = 𝟐𝟒𝟐 𝑵 = 𝟒𝟖𝟐 𝑵 = 𝟗𝟔𝟐 𝑵 = 𝟏𝟗𝟐𝟐

Δ𝑡 (minutes) 36 18 9 4.5



Error Growth in Time

MD Hammersley
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Convergence Verification 𝑡 = 5

35
log10 𝑁

lo
g
1
0

ℎ
−
ℎ
𝑒
𝑥
𝑎
𝑐
𝑡

2

ℎ
𝑒
𝑥
𝑎
𝑐
𝑡

2



Time Snapshots, Isolated Mountain
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Flow over Mountain, 𝑡 = 15
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Rossby-Haurwitz, 𝑡 = 14
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Strengths of PHS RBF-FD

▪ Simple and accurate on the sphere

▪ Local and well suited for parallel computations

▪ Free from coordinate singularities
▪ Discretize directly from Cartesian equations

▪ Geometrically flexible
▪ Does not require a mesh

▪ Static Node Refinement

▪ Dynamic Node Refinement

▪ Robust
▪ Same configuration (basis, stencil-size, hyperviscosity parameter) runs 

on a wide variety of node-sets and test problems

▪ 𝒙 2 log 𝒙 + p5 + 𝑛42 for first derivative approximations
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Future Work

▪ Transport
▪ 3D test cases on spherical shell (DCMIP test cases)

▪ More sophisticated fixer/limiter procedure

▪ Reduce parallel communication

▪ Shallow water equations
▪ Quantitative comparison to other methods

▪ Additional tests on the sphere from Williamson et al, JCP 1992

▪ Forced nonlinear system with a translating Low

▪ Evolution of highly nonlinear wave

▪ Nonhydrostatic Dynamical Core for climate/weather
▪ 2D benchmarks in Cartesian geometry with topography

▪ Fully 3D without using a terrain-following coordinate transformation

▪ Eulerian dynamics, semi-Lagrangian transport with fixer/limiter
40
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