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Example: Equi-spaced Interpolation in 1D ) .,
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Structure of the Linear System
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—PHS Interpolant

* Known Function Value
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Properties of Polyharmonic Splines ) i

= PHS basis includes both RBFs and polynomials

= RBFs improve performance and allow the use of irregular nodes

= polynomials give convergence to smooth solutions (no saturation error)
= The interpolation problem is guaranteed to have a unique solution

provided that polynomials are included up to the required degree, and the
nodes are unisolvent. Fork = 1,2,3, ...

= ¢(x) = ||x|I** log||x||

= Polynomials up to degree k or higher

= p(x) = ||x||?F+

= Polynomials up to degree k or higher

= Rule of thumb for modest polynomial degrees: Twice as many RBFs as polynomials

= Condition number of PHS A-matrix is invariant under rotation, translation,
and uniform scaling

= No need to search for optimal shape parameter



Interpolation in 2D [x = (x, y)] ) &,

Given nodes {(x;, y;)}/=, and corresponding function values {f;}/-, find a linear combination of RBF and
polynomial basis functions that matches the data exactly.

1. Assume the appropriate form of the underlylng apprOX|mat|on
P(x,y) = Zl ¢ (x,y) + z HicPr (X, Y)

where qb](x y) = ¢(x - Xj,y — 3’])

2. Require @ to match the data at each node:

m
O(x;,y;) = z Aipi(x;,yi) + z Pk (X, yi) = fi, i=123,..,n
=1 k=1

3. Enforce regularity conditions on the coefficients {Aj}:
n

Z/ljpk(x],y]) = 0, k= 1,2,3, v, m
=1

4. Solve the symmetric linear system for {Aj} and {u}.




Differentiation Weights in 2D

Interpolation Problem:

e ol = 5]

aij =, y) =d(xi —x, v —y), Lj=123..,n
Dik = Pr(xi, ¥i), i=123,..,n, k=123, ..,m.

Use [L®] (X, V) to approximate [Lf] (JZ V):

[L9](x,) = ZA [Les]E3) + Z Kl Lpi] (%, 9)

o afi]=( ald 270

welghts

b; =L¢;|(®,5), =123 ..,n
¢, = [Lppl (%, 9), k=123.. m.
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Derivative Approximation on the Sphere [,

= Given: nodes [x, y, z] on the sphere and function values f
"= Find: differentiation matrices (DMs) W, W,,, W; to apprOX|matei 3y 52

= Method: Use the fact that Vf (X, J, Z) is tangent to the sphere at (X, ¥,Z )

= For each node, get orthogonal unit vectors ez and ey tangent to the sphere

. . d d
= Use 2D method to get matrices W; and W, that approximate 7 and T

of of
- l7f=ex ste €995

» L= (e e+ (e5), 55 = {(ei iz + (e5), 55} f
= W, = diag{(ez)}W; + diag{(ey)l}w
- W, = diag{(ez),}W; + diag{(ey)z}wy
= W, = diag{(e;);}W; + diag{(ey)s}WA

10
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Semi-Lagrangian Transport ) .

= Governing Equations (velocity u is a known function)

- Z_/t) =—-u-Vp—pV-u, (Eulerian, short time-steps)
- % = (% Tu- \7) q = 0. (Semi-Lagrangian, long time-steps)

= Quasi-Monotone Limiter for g (const. along flow trajectories)

= m, = m{)ln {c”(c )} and M, = maX{CIi(c )}

= Set q(n Y = min {q,({nﬂ),Mk}
= Set ql(cn D = max{q,(cnﬂ),mk}

= Mass Fixer (tracerMass = Z’,X:lpquvk)

= |f tracerMass < initialMass, add mass in cells with q;, < M,

= |f tracerMass > initialMass, subtract mass from cells with q;,, > m,,
11




Semi-Lagrangian Transport
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National

Pre-Processing .

" Get DMs W,, W,,, and W, for the continuity equation
= Find index of the n nearest neighbors to each node

= For each node x;, = (xy, Vi, Zx), Write its n neighbors in
terms of two orthogonal unit vectors (e,g, ey) tangent to the
sphere at x5, and one unit vector e; normal to the sphere at

Xy, SO that

xk{, = k\k#ex‘ + yk{,ej; + ZAk{,eZ", { = 1,2,3, e, N

Ak

P! O6><6] [O6><n

(Ap)ij = ¢ (xki — X Vi — 3’kj); L,j=123,..,n
Pr = |1 %y, Vi, X2, X Vi, Vi -

= SetC, = ] where

13




Time Stepping h .

1. Step ?3_[; =—u-Vp—pV-ufromt, tot, 1 using several
explicit Eulerian time steps (RK3)
Step x' = —u from t,,, { to t,, to get departure points (RK4)
Find the nearest fixed neighbor to each departure point

4. Use the corresponding pre-calculated cardinal coefficients
{C,} and the newly formed row-vectors {b; } to get rows of
the interpolation matrix W (W,. = b, Cy)

5. Update g on fixed nodes using weights W

6. Cycle quasi-monotone limiter and mass-fixer until the tracer
mass is nearly equal to the initial tracer mass (diff<le-13)

/. Repeat

14




Hyperviscosity ) =,

= Add a small dissipative term to the continuity equation

o g—’t) =—u-Vp—pV-u+ymax||u| (Ax)?4~1A%p

= Reduce high-frequency noise while keeping order of
convergence intact

= Achieve stability in time using explicit time-stepping

= PHS are ideal for hyperviscosity, because applying the Laplace
operator to a PHS returns another PHS

= plx,y) = (x% + y?)n/?

92 02 —
f (891 y) =55+ 55 = mAG? + y)moD2

= Parameter y € R is determined experimentally at low
resolution, and remains unchanged as resolution increases

15




Transport Test Cases on the Sphere ) i

= |nitial Condition gy (pg = 1 in all cases)

= Taken from Nair and Lauritzen, 2010 (NL2010)
= @Gaussian Hills (infinitely differentiable)
= Cosine Bells (once continuously differentiable)
= Slotted Cylinders (not continuous)

= Velocity Field (NL2010)

= Case 1: Translating, vorticity-dominated flow (CFLmaX = % ~ 8)

= Case 2: Translating, divergence-dominated flow (CFL5x = 5)
= Spatial Approximations (Minimum Energy (ME) Nodes)

= Number of nodes N = 24%(576), 482(2304), 96%(9216), 192?(36864)
= Interpolation (semi-Lagrangian tracer transport)
= |lx||® + p1 + n19
= Derivative Approximation (Eulerian continuity equation)
* |lx|I* logllx]| + p5 + n42
= Time-stepping fromt = 0tot = 5 (one revolution) 16



Nodes and Initial Conditions for g ) 5.

Gaussian Hills
(GH)

Cosine Bells
(CB)

N = 242 =576 Slotted Cylinders
ME nodes (SC)




Time Snapshots, Velocity Case 1 [




Time Snapshots, Velocity Case 2 .




GH, Velocity Case 1, Unlimited h .
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CB, Velocity Case 1, Unlimited h .
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SC, Velocity Case 1, Unlimited
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GH, Velocity Case 1 ) B,

Unlimited Limited
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CB, Velocity Case 1 ) B,
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SC, Velocity Case 1 ) B,
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GH, Velocity Case 2 ) B,
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CB, Velocity Case 2 ) B,
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SC, Velocity Case 2
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Advantages of Semi-Lagrangian Transport (&,

max||u||At

» 1)
Ax
= Simple governing equation and solution algorithm

= Large Time steps (

Dt Dt ot

= g is constant along flow trajectories
= No spatial derivatives

= (1) time-step for departure points, (2) interpolate for new values of g

= No need for hyperviscosity

= High frequencies automatically damped by repeated interpolation
= Numerical solutions remain bounded even if the node set is poorly
distributed

= Simple limiter to reduce oscillations and preserve bounds

29



Sandia

Shallow Water Model ) s

Governing Equations:

du =~
E——u-Vu—f(kxu)—th,
dh’ * *

o =—u-Vh*—h*(V-u).

= f = 2Qsinf, where ) = angular velocity of Earth, 8 = latitude
= kis the unit normal to the sphere

= g is gravitational acceleration

= h=h.(x,y,z)+ h*(x,y,2zt) is the depth of the fluid

Note: The velocity u is adjusted after every Runge-Kutta stage to remain
tangent to the sphere (u —u-— (u : E)E)

30




Nodes ) e,

Maximum Determinant (MD) Hammersley




Sandia

Shallow Water Test Cases h) e

= Taken from Williamson et al, JCP 1992

= Steady-state smooth flow
“ hg=0
= Exact solution known

= Flow over an isolated mountain

T TT

" hg is a cone-shaped mountain centered at (4,60) = (_E’Z)

= Exact solution unavailable
= Rossby-Haurwitz Wave

" Uy and hy satisfy the barotropic vorticity equations
= h,=0
= Exact solution unavailable

32




Parameters for Shallow Water Tests ) i,

. : . o 0
= Derivative approximations (—,— —)

ox’' 0y’ 0z
2
¢(x) = [|x]|" log]|x]|
= Polynomials up to degree 5
= Stencil size 42 (twice as many RBFs as polynomials)
= Hyperviscosity (A3)
7
= ¢(x) = |«
= Polynomials up to degree 5

= Stencil size 42
= Parametery = 2712~ 24 x107*

= Time Stepping (3 stage, 3" order Runge-Kutta)

_

At (minutes) 36

33




Error Growth in Time
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Convergence Verification (t = 5) @z,
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Time Snapshots, Isolated Mountain ) i
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Flow over Mountain, t = 15
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Rossby-Haurwitz, t = 14
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Strengths of PHS RBF-FD ) .

= Simple and accurate on the sphere
= Local and well suited for parallel computations
= Free from coordinate singularities

= Discretize directly from Cartesian equations

= Geometrically flexible
= Does not require a mesh
= Static Node Refinement
= Dynamic Node Refinement

= Robust
= Same configuration (basis, stencil-size, hyperviscosity parameter) runs
on a wide variety of node-sets and test problems
= ||1x]I? logl|x]| + p5 + n42 for first derivative approximations

39



Future Work 1) .

= Transport
= 3D test cases on spherical shell (DCMIP test cases)

= More sophisticated fixer/limiter procedure
= Reduce parallel communication

= Shallow water equations
= Quantitative comparison to other methods

= Additional tests on the sphere from Williamson et al, JCP 1992
= Forced nonlinear system with a translating Low

= Evolution of highly nonlinear wave

= Nonhydrostatic Dynamical Core for climate/weather
= 2D benchmarks in Cartesian geometry with topography
= Fully 3D without using a terrain-following coordinate transformation

= Eulerian dynamics, semi-Lagrangian transport with fixer/limiter

40
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